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Simple models of polymer dynamics are available in dilute solution, moderate concentrations and melts, 
since it is possible to make models of the motion in these cases. A series of power laws result which fit 
well with computer simulation. It is more difficult to derive these models directly from sensible equations 
of motion, but progress in this direction is reported in the paper. 
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INTRODUCTION 

Polymer dynamics involve different time scales according 
to the part of the polymer involved and the environment 
that it finds itself in. In smaller molecule dynamics one can 
identify three obvious regimes, the molecule alone, usually 
meaning in the gaseous phase where one has an n body 
problem if there are n atoms, an n body problem with 
external noise and friction which, roughly speaking, is 
what one expects in a liquid, and to some extent a glass, 
and finally part of an Nn body problem in a crystal. 
Notoriously the middle problem is the worst since the first 
has non stochastic equations, and the crystal is at least 
quite explicit, and there is a well defined band theory. The 
liquid case is the most difficult since the molecule has a 
structure comparable to its surroundings, it could for 
example be in the liquid phase ofits own species, and there 
is no easy way to simplify the environment as there is with 
a large Brownian particle in a small molecule fluid. 

If one studies a polymer which is a string of smaller 
monomers then only those aspects of its behaviour which 
have to do with the polymerized nature have any hope of 
being easier to understand than the corresponding mono- 
meric liquid, and the solid state of polymers will always be 
more difficult than the crystalline phase of the monomer, 
although again they may have some features which are 
simpler than the monomeric glass. 

One can consider the behaviour of polymers characte- 
rized by relaxation times or typical frequencies, and the 
discussion above amounts to saying that when one studies 
high frequencies, a polymer melt is only marginally 
different from a monomeric melt, and indeed this is borne 
out experimentally. But the polymerized nature of the 
material totally alters melt and solution behaviour at low 
frequencies, the long chain nature being reflected in the 
spectacular increases in viscosity which are so characteris- 
tic of polymers. There will of course be effects in the solid 
state also, but they are not so spectacular since the fall of 
temperature means that Van der Waals or hydrogen 
bonds are now real bonds and all glasses are polymer 
networks in some sense; a glass made of polymer is much 
the same as any other glass once one is well past the glass 
temperature. 

So if one wants to study stimulating theoretical ideas it 
is natural to aim at effects which are characterized by long 

time scales, and an obvious pitfall ensues. To graft that 
kind of theory onto monomeric structure is a hard 
problem, because it is no good solving by methods which 
are fine on long time scales and extrapolating to short 
time scales. This is a general caution to be noted. Current 
polymer dynamics initiated in the famous Rouse paper is 
at the level of elastic wave theory of solids, the Born Von- 
Karman theory, or equivalently the Rayleigh, Jeans and 
Wien formulae of black body theory. The Born Von- 
Karman theory does not produce the multiplicity of 
branches in the vibrational spectrum, nor the way that 
faults affect the spectrum. But there is an enormous 
richness in polymer theory at the Rouse level since a 
whole host of new problems, still entirely confined to long 
time scales, appear in polymer problems, and they pose 
problems which are very deep mathematically but in- 
tuitively obvious, for example: how long will it take for a 
knot to untie if the string is subjected to Brownian 
motion ? (If the string is in a melt, the melt encloses it like a 
tube, and one question is asking how long it takes for the 
chain to wriggle out of this knotted configuration into a 
new configuration. This is clearly a shorter time than 
wriggling right out of the initial tube into an entirely new 
tube, and that time can be calculated by reptation theory 
and is proportional to L -2. So unless the new tube is the 
same class of knot one has the solution to the query at a 
crude level). 

I shall put forward a chain of developments of dynamics 
in recent years which amount to a reasonable intuitive 
solution for long time scales, and point out the basic 
problem of improving these theories to the level of 
mathematical proof. 

THE SINGLE CHAIN 

Forces between monomers, and also forces between the 
polymer and its surroundings have the effect of expanding 
or contracting the chains. This paper is concerned with 
dynamics, so it will omit all discussions of swelling or 
precipitation. This is a topic 'under control' and can be 
built into the analysis without too much difficulty; it is not 
worth while muddying the equation with complexity 
which will not be used. There is a dynamical equivalent to 
this simplification in that every motion involves crossing 
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potential barriers in quite complex ways, and these ways 
are affected by the environment just as a single particle 
can have complex jump behaviour but still in the end will 
have its long time motion governed by a simple diffusion 
equation : 

( > &-D$ P(x,t)=O (1) 

one can hope for a similar equation for the polymer. 
In the presence of a potential V(X) a particle in 

equilibrium will have PO= (e(F-V”))‘KT) where eF’KT is the 
normalization, This modities equation (1) to 

(;-D-&(&+-&qP=o (2) 

a simple but rather unfamiliar form since one generally 
does not find Brownian particles in central fields of force. 
The mathematical form is familiar in the Fokker-Planck 
equation for the case of particles with inertia and soft 
forces which has the form: 

( ~+~-~-~~(-g+glJ=o (3) 

D,(u) being the velocity dependent tensor dilfusivity 
required in say plasma physics. 

What is P, for a polymer? In equilibrium it is a random 
walk. Suppose it were freely hinged rods whose ends were 
at r1,r2 . . . r, and each rod is of length I: 

Po=n~(lri-ri+,l-0 
I 

(4) 

It is well known that the end-to-end statistics or indeed 
the statistics of any points distant from one another long 
the chain is independent of the precise neighbour con- 
figuration, and the analogue of the variable which de- 
scribed elastic waves in a solid, or the macroscopic density 
or velocity in a liquid, are the Fourier components 

R, = xr,,eZninqlL (5) 

which gives (by a well known straightforward derivation 
not reproduced here) 

(6) 

(I have used the complex form for simplicity, but it 
contains the real form if required by relations between the 
real and imagining parts of Rq) The 4 in the sum cannot 
exceed the number of links (recall the Born theory) but in 
fact if ever we need to restrict the sum the theory will be 
wrong since high 4 brings us into a region outside the 
present validity. Note that there is no JCT in P,, the 
random walk has entropy but no internal energy. The 
analogue of equation (2) is now 

Provided one realises that only the 4 variables have 
meaning, one can also back Fourier transform 

where the continuous arc lengths have replaced the 
discrete nl, but for those who find functional differential 
equations hard to swallow one may emphasize that 
equation (7) is exactly the same as an equation for highly 
damped phonons in a solid, or radiation in a highly 
emitting and absorbing material. 

Equation (7) is the Rouse equation and the q’s label 
Rouse modes. It can be solved exactly, for if one writes 

one has 

a2 -$Rq,2(&~+&$))P=0 
i?R,c?R_, 4 

which is Hermites equation and is in all the books under 
the quantum theory of the harmonic oscillator, give or 
take a few constants and i. 

From this equation one can work out the probability of 
the polymer getting from any given shape to any other. By 
taking the first moment of equation (7) we see that it is 
derivable from a Langevin equation: 

3uT 
A,+- &3 q2% = r, (11) 

where v is a friction 

lCT 
-D -- 

V 

and 

~‘lRq12 

(12) 

(13) 

is the free energy per mode, fq being a random force. This 
friction vR is just like the ‘67~~ of a Brownian sphere in 
Stokes formula, which amounts to saying that the chain 
suffers a Stokes drag along its length and this drag shows 
no coupling along the chain. 

In fact it must show coupling since the flow around any 
point will affect neighbouring parts of the chain, unlike 
Stokes’ problem where each Brownian sphere is con- 
sidered remote from each other one. The hydrodynamic 
effects have been put in by Zimm and modify the diffusion 
equation in a way most easily written in the form of 
equation (8). 
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where ~,fl label a pair of polymers, #,v are Cartesian 
indices and ~ is known in the hydrodynamical literature 
as the Oseen tensor. It is most easily written in Fourier 
transform 

( 6u'-  kukJk2 ) r T  
(15) 

(The speed of propagation of the signal through the liquid 
is ignored here). 

Equation (10) is frequently simplified by replacing D by 
its average for a random walk: 

( e i k .  (RI~)(s) - R&I(S'))) = 6,ae - k21ls - s'[/6 ( 1 6 )  

so that 

R ~') s R ~) s t~ 
2 f f  ( .) ( ,)) 

which, on averaging ~,  becomes 

Z ~ xT /' C 3q2R~')'~ 
.-~,) ~ - - 2 i 7 g | ~  + ~ 1  (17) 

, ,~lx~ rlq \ v ~ q  z l r l  / 

From these forms, or directly from the Langevin 
equation one can derive the correlation functions 

(eikl~')(s ~t) - ,'¢P)(s.B,O))) = e - f< I~%,s ) - .'~%.o)) ~ ) (18) 

( (R~')(s,,t) - Rte)(ra,0)) 2) 

itot + iqs _ ~ , t~ / ' -  - ( 1 - - e  )DxT 
--o Joqac9 (02 + (DqZKT)2 

(19) 

for the Rouse case and 

fdqdco(1 - e '~' +i'~) T q  1/2  Y 
y ; i201 

for the Zimm case. The Zimm result is more realistic since 
it is derived from possibly realistic model, that of a 
polymer embedded in a fluid with normal hydro- 
dynamics. The weakness of the model lies in the neglect of 
the entanglements. The Rouse model on the other hand is 
not realistic as it stands since there is no justification for 
assuming a drag coefficient in the form of a simple 
constant, which certainly will not result from the equa- 
tions of hydrodynamics. Experimentally the viscosity of a 
dilute polymer solution verifies the Zimm result, for the 
viscosity in this case is proportional to/2/2, i.e. M I/2 where 
M is the molecular weight. 

The hydrodynamic interaction ~ is screened once the 
density of the polymer is such that the chains overlap. If 
one takes equation (14) and averages away all polymers 
except one, one finds that simple screening does obtain, 
and just using mean densities the equation governing the 
effective hydrodynamics equation. 

Cu Vp _ 
+ n(k)u~ + ~..id= Lxtoma~ (21) 
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and the effective polymer dynamics 

[lq + KTqZRqJ(q) = fu(R(s))eiq~ds (22) 

where 

• ,t-,l" k21/3 "~ 3xTq2/l 
r/(k)=r/o+c~kk412/~-+q2)ie)+3~Tq2j(q)/l (23) 

where c is the polymer concentration, and 

oO 

1 ~ d" j2 j21/3 
J(q) = 3~-~0 J d ~ ( j 4 1 2 / 3 6 )  +q2 

0 

(24) 

If an arbitrary friction term is still left in, it will appear as 

(1 + vJ(q))Rq + xTq2j(q)Rq = u (25) 

At high enough densities one can expect a solution 

q(k) = (tlo +&l)k 2 k2Ll < 1 
(26) 

= t/o(h2 +~ -2 ) h2Ll>l 

where, by studying equations (23) and (24) one finds that 

- 2  7C ̂ ~ -  1 =~-~ 

so that (27) 
2 

7~C 

This is of course an asymptotic solution to have so 
simple a form and the full equations are quite com- 
plicated. A particular problem is that the entanglements 
must dominate at high enough density, and it is not clear if 
this screened regime is ever realistic; but experimentally 
one certainly has a regime of viscosity M before the melt 
behaviour characterized by M 3 + sets in. This region will 
be considered below. 

The conclusion of this section is then that the diffusion 
of a single point on a polymer in solution, or the two body 
correlation function, can be obtained provided that 
entanglements are ignored, from the formula 

eikR(s t )  - R(s', 0 ) )  

{ k 2 ~l-e'°~'+iqt'-"))xJJ(q), , =expL- -jj ae)aq 

(28) 

(one point function has s = s', the two body correlation is 
integrated over s - s ' )  where J is given by equation (24) 
coupled with equation (23). 

ENTANGLEMENTS 

We have seen in the last section that the dynamics of chains 
which are transparent to themselves can be resolved when 
they are in Brownian motion with a simple drag friction, 
or surrounded by a viscous fluid, and when many chains 
are present some screening phenomenon intervenes. But 
in fact all chains are non-transparent, and this fact 
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Figure 1 Schematic illustration of two dimensional lattice 
defining a tube 

dominates motion in melts or concentrated solutions 
since almost all motions are blocked. A surviving motion 
will be the wriggling of the chain up and down the 
statistical tube which one can imagine surrounding it on 
average, and a plausible viscoelastic theory can be 
developed from the reptative motion. It is also possible 
that some kind of collective motion could exist, but no 
convincing theory of this exists at present. To illustrate the 
concept of reptation there is a simple computer 
experiment. 

Suppose a lattice is made up in two or three dimensions 
which we illustrate by a two dimensional array of dots 
(Figure 1). The polymer is moved by Monte Carlo moves. 
It is well known that without the lattice this gives the 
Rouse equation. If one regards the lattice as defining a 
tube one can characterize this by pulling the polymer taut 
generating another walk with a larger steplength, called 
the primitive path. The steplength of this primitive path, a 
say, is also the thickness of the tube. 

Suppose the distance along the tube is S and the 
absolute coordinate R 

( (R(SI)  - R(S2)) 2) = alS1 - S21 (29) 

Now consider a point on the polymer initially labelled S 2 

and after a time labelled $21. Then 

((Sl -S2) 2) 

is given by the Rouse equation in one dimension and this 
as was shown above gives 

f dqfm2 e~t/2 ,,~ 
o)2 + q4 x/~ (30) 

(Note the distinction between this and a Brownian point 
particle which gives t.) Hence 

((S(t) - S(O)) 2) oc x/t- (31) 

( (R(S,t)- R (S,0))2) oct 1/4 (32) 

Thus one might expect a time scale initially of t 1/2 for the 
polymer has yet to notice the tube. Then t 1/4, it is diffusing 
up and down the tube. The centre of mass is the special 
component q =0  and will have the usual t for S and hence 
t 1/2 for R, so after a longer time again the centre of mass 
will diffuse and take any point with it, giving t 1/2. 

Finally the polymer gets right out of the tube and 
creates a new tube and the final t law must result. Thus one 
expects the hierarchy 

t 1/2, t ~/4, t 1/2, t (33) 

The initial t 1/2 is a bit difficult to find with a computer 
which is moving the system very quickly indeed to get into 
the other ranges, but with the eye of faith one can see the 
other three ranges (Figure 2). 

This is for af ixed  lattice and a free polymer. When all 
the polymers move the time taken over the computation 
has to be immense both because one has to move many 
more polymers and the checking of the topological 
integrity is much more difficult and no longer can be 
incorporated into the program without the use of memory 
and because the system becomes 'soggy' and collective 
modes are clearly possible, but not easy to incorporate in 
a one point Monte Carlo system. Various authors give 
various results, but my belief is that the reptation picture 
has to be the starting point of any theory. The author's 
papers with Evans 2 illustrate a whole range of dynamical 
effects of the fixed lattice models, and these results have 
been extended by Needs to star molecules, verifying the 

1.0 

2.0 

.Y 

I I I I I 
2.0 3.0 4.0 5.0 6.0 

Figure 2 Time scale ranges for polymer chain movement in a 
statistical tube 
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results of the theories of de Gennes ~ and of Doi, and the 
experimental diffusion results of Klein. 

Thus we can now argue that the diffusion law as a 
function of concentration will go as follows: 

Low concentration t 2/3 finally t 
(hydrodynamics Zimm) 

Higher concentration t 1/2 finally t (34) 
(screened to Rouse) 

Melt (reptation: de Gennes)t 1/2. tl/4, finally t 1/2 then t 
The intermediate regions are difficult and a principal 

difficulty is that the fundamental problem of how to 
describe the motion of entanglements has to be resolved in 
the region between higher concentration and very high 
concentration. In the former (and in the Zimm regime) one 
just ignores it. In the very high density regime it becomes 
straightforward once it can be represented by a tube. 

How can one give a representation of the tube in 
mathematics ? One way is to consider the polymer at two 
times. Since this paper is being read at an n.m.r, conference 
I will not worry about very long time scales; alternatively 
we can consider rubbers where the tubes are permanent. 
Suppose the polymer is initially R 2 (S) or R 2 (q) and later at 
R~(q). Then over the time scale over which the polymer 
moves a tube step length it will not encounter the walls. 
(This whole argument is going to be 'average'). Let this 
time be called (Dq2o)- 1 where qo has the dimension of q 
and is related to a, 

qo ~ la- 2 (35) 

The Rouse equation is a version of Hermite's equation 
and the joint probability of finding R1 (q) at t = 0 at t = t is 
given by 

f 3 q2 2 3 q 2  
P([Rl l [R2])= ]-Iexp~-~-(IRxql  + IR2q12) - 

q ( z zrc 2n 

2 3 2 (]Rlq[ 2 + [R2q]2)coth Dq t + ~ q  (RlqR2q 

+ R1 -qReq)Cosech Dqet} 

× [(sinh Dq2t)/Dq2t] - 3/2 (36) 

Note that 

f P([R1],[R2],t)HdRI~ = Po([R2] ) 

and 

f P([R1],[R2],t)HdR2q = Po([Rla]) (37) 

where 

3 1 2 Po=N e x p ( - ~ ] R q ]  ) (38) 

This is for a free polymer. 
We now argue that for a polymer in a pipe the joint 

probability is the expression above with 
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Dq2t = q2/q2 

giving 

Note the complexity of the joint form. It would have been 
quite wrong to solve the problem of a single polymer 
constrained to one dimension. The dynamics of a polymer 
R tied by a tube constraint represented by a locus R e can 
be developed by noting that Poo([R],[R2-]) is the equilib- 
rium distribution of R hence the equation: 

0 ~ D  0 ( 0  1 0 ~ o  Pt.~([R],t) 

It will be seen from the structure of Poo that R and R 2 are 
strongly correlated over q<qo, i.e. S>a, but weakly 
correlated for q>qo, i.e. S<a, which is precisely the 
primitive path picture. 

It will be seen that --1 0P°° is a linear expression in R 
P0o OR 

and R 2, so that equation (39) is still a version of Hermite's 
equation and can still be written down in closed solution 
so that one can now derive a form 

P(ER],[R]E[Re]]t) 
for the probability that a chain constrained by a tube to 
R2 starts at il and is at R at t. 

But the answer is sufficiently algebraically tedius that I 
will not write it down (it possesses the property of being 
tedious even though trivial !). 

A phenomenology is now complete, but what of the 
mathematics of entanglement? 

A RIGOROUS THEORY 

This can be derived from the full hydrodynamic form 
equation (14), because this equation comes from the 
Stokes boundary condition 

R=u(R)  

where u is the fluid velocity. Hence if R1 =R2 

Rx =R2 

It is now possible to argue that this condition is 
sufficient to stop the polymers crossing. Hence the 
entanglements are already in equation (14). A particularly 
simple version of this is to freeze all the polymers except 
one. Then one can show that the last polymer R (1), satisfies 

0 ,, 0 1 2 

(ORf)(s,) 2~R°)) =0  

(40) 

where D vanishes if any point of R (1) touches any point of 
R (2), R(3)... 
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So at a rigorous level we have equation (40) which must 
be equivalent to equation (39) which expresses the 
primitive path structure explicitly, i.e. if one could average 
away Rt2)R(3) . . .  it would have to be in terms of one  of the 
primitive paths defined by these loci. The point is that the 
solutions of equation (40) (as shown in ref. 3) break up into 
a set of probabilities each associated with one of the 
primitive paths of the network. 

This is all quite straightforward for melts for in spite of 
the apparent complexity it is merely showing a pathway 
from basic equations to the results of the 'Entanglements' 
section, and to a much more accurate form of correlation 
functions. I have hope that having got these basic 

equations one can explore the transition region, but have 
a horrible suspicion that computer simulation will get 
there first. 
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